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Abstract. We consider issues related to the design and analysis of least-squares methods for the incompressible Navier-
Stokes equations. An abstract framework which allows to treat a large class of methods is outlined and illustrated by means of
several specific examples of least-squares methods.
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1. Introduction. Let Ω be a bounded, open domain in Rn, n = 2, 3. We shall be concerned with finite
element methods of least-squares type for the incompressible, steady state Navier-Stokes equations

−ν4u + u · gradu + grad p = f in Ω(1)
divu = 0 in Ω(2)

u = 0 on Γ .(3)

As usual, u, p, ν and f denote velocity, pressure, kinematic viscosity (the inverse of the Reynolds number Re),
and a given body force, respectively. The Stokes problem associated with (1)-(2) is obtained by neglecting
the convective term u · gradu in (1):

−ν4u +∇p = f in Ω(4)

Let us recall that in the mixed Galerkin method (see, e.g., [14], [15], and [17]) a weak form of (1)-(3), given
by: seek u ∈ [H1

0 (Ω)]n and p ∈ L2
0(Ω) such that∫

Ω

gradu · gradv dΩ−
∫

Ω

p divv dΩ +
∫

Ω

u · gradu · v dΩ =
∫

Ω

f · v dΩ ∀v ∈ [H1
0 (Ω)]n(5) ∫

Ω

q divu dΩ = 0 ∀q ∈ L2
0(Ω)(6)

is discretized using a pair of finite element spaces (V h, Ph) for the approximation of u and p, respectively.
This yields a nonlinear system of algebraic equations of the form[

A + G(Re,uh) B
BT 0

] [
uh

ph

]
=

[
f
0

]
.(7)

The use of the weak problem (5)-(6) gives rise to several complications in the algorithmic design of methods
for (1)-(3). These complications are primarily caused by the saddle-point optimization nature of (5)-(6) and
its discrete counterpart (7). The first difficulty arises at the discretization level. It is now well-known that
the pair (V h, Ph) must satisfy the LBB condition; see [1], if stable and optimally accurate approximations
are desired. Let us note that conformity of the pair (V h, Ph) does not by itself guarantee that the LBB
condition is satisfied. For instance, conforming pairs such as (P1 − P0) and (Q1 − Q0) are unstable; see
[15]. The second difficulty arises at the solution level. The main obstacle here is again the saddle-point
character of (7). Furthermore, if one uses, e.g., Newton linearization to solve (7) then, as the Reynolds
number increases, the block A+DuG(Re,uh

n−1) becomes both highly nonsymmetric and indefinite. Despite
the significant progress made in the recent years, such problems are still hard to solve.

The adverse effects of the LBB condition on the algorithmic design have prompted considerable efforts
aimed at circumventing this condition. One approach is to retain the weak problem (5)-(6) and to introduce
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stabilizing terms by modifying (6) or (2). Such are, for example, penalty, stabilized Galerkin and Galerkin-
least-squares methods. An example of a penalty procedure is given by the method of [2] where (6) is modified
according to ∫

Ω

qh∇ · uhdΩ−
∑
4

h2

∫
4
∇ph · ∇qhdΩ = 0.

This method introduces a penalty error of O(h) independent of the choice of the discretization space. Note
that the penalty term may also be interpreted as adding h24p to (2). An example of a Galerkin-least-squares
procedure is provided by the method of [16] in which (2) is modified according to∫

Ω

qh∇ · uhdΩ−
∑
4

h2

∫
4

(−4uh +∇ph − f) · ∇qhdΩ = 0.

Note that this is not a penalty formulation since the additional term vanishes on the solution, i.e., it does
not cause loss of accuracy as in penalty methods.

In this paper we shall be concerned with a different approach which circumvents the LBB condition
with the help of least-squares variational principles. In contrast to (5)-(6) weak problems are now defined as
necessary conditions for a problem dependent least-squares functional. As a result, the associated discrete
problems are in general symmetric and positive definite, at least in a neighborhood of the exact solution.

2. A least-squares framework for the Navier-Stokes equations. Unlike the mixed Galerkin
method, application of least-squares principles to (1)-(2) can lead to substantially different methods. The
specific outcome depends on several factors among which the most important are

• the possibility to use various equivalent forms of the Navier-Stokes equations;
• the choice of norms in the least-squares functional;
• the choice of discretization spaces;
• the treatment of essential boundary conditions, e.g., using interpolants or boundary residuals.

This abundance of choices has to be carefully examined in order to obtain methods that are both optimally
accurate and practical. Nevertheless, as we demonstrate below, it is possible to consolidate analysis and
development of a wide range of least-squares methods for (1)-(2) into an unified abstract framework based
upon application of the implicit function theorem. The origins of this framework can be found in the abstract
nonlinear theory of Brezzi, Rappaz and Raviart; see [14].

Below we present a necessarily brief summary of the least-squares framework for (1)-(2) and then proceed
with several examples that illustrate specific applications of this framework. In what follows we use L and
R to denote a Stokes operator corresponding to a particular form of (1)-(2) and an admissible boundary
operator, respectively. The set of dependent variables associated with the particular form of the Navier-
Stokes equations is denoted by U . We express these equations symbolically as

L(U) +N (λ, U) = F in Ω;(8)
R(U) = G on Γ ,

where N (λ, U) accounts for the nonlinear term and λ ≡ Re. In (8) it is tacitly assumed that momentum
equation is scaled by Re. Development of least-squares methods for (8) will be accomplished in two stages.
At the first stage a least-squares principle is used to introduce a nonlinear variational problem posed in
some functional spaces. At the second stage this, or a related problem, is discretized resulting in a nonlinear
system of algebraic equations. Concerning the problem (8) we assume that
H.1 there exist two Hilbert scales Xq and Yq ×YqΓ for the solution and the data, respectively such that

the associated Stokes problem is well-posed;
H.2 the Navier-Stokes equations (8) have a nonsingular branch of solutions {λ, U(λ)}, such that for some

fixed q, U(λ) ∈ Xq for all λ ∈ Λ. Here Λ denotes a compact interval in R.
The first hypothesis amounts to the validity of an a priori estimate given by

‖U‖Xq
≤ C

(
‖L(U)‖Yq

+ ‖R(U)‖YqΓ

)
,(9)
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while the second hypothesis implies that problem (8), linearized at U(λ), has a unique solution for any λ ∈ Λ.
Each hypothesis has critical importance for the development of the least-squares method. From (9) it follows
that a norm equivalent functional for (8) is given by

Jq(U ;F,G) =
1
2

(
‖L(U) +N (λ, U)− F‖2Yq

+ ‖R(U)−G‖2YqΓ

)
.(10)

The least-squares principle for (8) then is to seek a minimizer for (10) out of Xq. Standard techniques from
calculus of variations can be used to show that the Euler-Lagrange equation for (10) is given by the nonlinear
variational problem: seek U ∈ Xq such that(

L(U) +N (λ, U)− F,L(V ) +N ′(λ, U) · V
)
Yq

+
(
R(U)−G,R(V )

)
YqΓ

= 0, ∀V ∈ Xq ,(11)

where N ′(λ, U) denotes the derivative of N with respect to the second argument. If

BS(U, V ) = (L(U),L(V ))Yq
+ (R(U),R(V ))YqΓ

BG(U, V ) = (N (λ, U),L(V ))Yq
+ (L(U) +N (λ, U),N ′(λ, U) · V )Yq

Q(U ;V ) = BS(U, V ) + BG(U, V )
F(V ) = (F,L(V ) +N ′(λ, U) · V )Yq

+ (G,R(V ))YqΓ
,

then (11) can be written compactly as: Q(U ;V ) = F(V ), ∀V ∈ Xq. Let us show that this problem is
equivalent to an abstract nonlinear equation of the form

seek U : Λ×X 7→ X such that F (λ, U) ≡ U + T ·G(λ, U) = 0 ∀λ ∈ Λ ,(12)

where Λ ⊂ R is compact interval, X and Y are Banach spaces, T : Y 7→ X is a linear operator in L(Y,X),
and G : Λ×X 7→ Y is a C2 mapping. For this purpose we let X and Y be the two Hilbert scales from H.1,
and identify T with a least-squares solution operator for L, i.e.,

T · U = g ∈ X∗
q if and only if BS(U, V ) = (g, U)Xq for all V ∈ Xq.

Similarly, the operator G is identified with the nonlinear term in (11), i.e.,

G(λ, U) = g if and only if BG(U, V ) = (g, V ) for all V ∈ Xq.

With these identifications it is not difficult to see that (11) is indeed equivalent to (12). The two hypotheses
H.1 and H.2 are critical for the well-posedness of (11). Thanks to (9) (which is a consequence of H.1) it
follows that BS(·, ·) is coercive on Xq × Xq and, as a result, T is a well-defined operator. The second
hypothesis, on the other hand, guarantees that if U(λ) is a nonsingular solution of (8), then the Frèchet
derivative DUF (λ, U(λ)) is an isomorphism of Xq.

At this point we have arrived at a well-posed nonlinear variational equation. The next step is to use this
equation to define a discrete problem which can actually be solved on a computer. The most straightforward
way, of course, is to consider conforming discretization of (11). This is also the most convenient way from the
point of view of the analysis of resulting methods. However, sometimes it may lead to an impractical method.
In such a case it is necessary to consider other options in which (11) or (10) are not used directly in the
discretization process but rather serve as templates for the discrete problem. Typically this involves replacing
the primary least-squares functional (10) by a discrete counterpart which retains most of the properties of
(10) when restricted to finite element spaces. Then the discrete problem is defined as a necessary condition
for this new functional. The specific details of this process can vary significantly from case to case and it
is much more instructive to look at concrete examples of finite element methods. Such examples will be
discussed in the next section, while in the remainder of this section we concentrate on a framework only for
conforming discretizations.

To define a conforming method for (8) let us fix the scale parameter q and introduce a finite dimensional
subspace Xh

q of Xq. Then, a discrete problem is obtained in the usual manner by restricting (11) to the
space Xh

q , i.e., it is given by: seek Uh ∈ Xh
q such that

Q(Uh;V h) = F(V h), ∀V h ∈ Xh
q .(13)
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The structure of the discrete problem (13) is very similar to that of (11). Indeed, let Th denote an approxi-
mation of T defined by

Th · Uh = g ∈ X∗
q if and only if BS(Uh, V h) = (g, Uh)Xq

for all V h ∈ Xh
q .

Then, it is easy to see that (13) is equivalent to

Fh(λ, Uh) ≡ Uh + Th ·G(λ, Uh) = 0 .(14)

There are two issues that must be addressed at this point. First, one must show that (13) is a well-posed
problem and that Uh is close to the solution of (8). Second, (13) is a nonlinear system of algebraic equations
that must be solved iteratively. In both cases, hypotheses H.1 and H.2 are again of critical importance.

Consider first the well-posedness of (13) and the error estimates. Since Xh
q ⊂ Xq form BS(·, ·) is coercive

on Xh
q ×Xh

q and, therefore, Th is well-defined. Under appropriate regularity assumptions one can show that

lim
h→0

‖(T − Th)g‖Xq
= 0.(15)

This, in combination with H.2 can be used to show that for h small enough DUFh(λ, U(λ)) is an isomorphism
of Xh

q . Now, existence and uniqueness of solutions to (13) follows by virtue of the implicit function theorem.
Furthermore, if (15) is valid, one can show that the discretization error of the nonlinear problem (13) is of
the same order as the error in the approximation of T by Th.

Lastly, consider solution of the nonlinear system (13), using, e.g., Newton linearization. This method
generates the sequence {Uh

k } of Newton iterates by solving the sequence of linear problems

(I + Th ·DUG(λ, Uh
k−1)) ·∆Uh

k = −(Uh
k−1 + Th ·G(λ, Uh

k−1)).(16)

Note that the coefficient matrix (I + Th ·DUG(λ, Uh
k−1)) in (16) is exactly the Hessian matrix of the least-

squares functional (10) and that

DUF (λ, Uh
k−1) = (I + Th ·DUG(λ, Uh

k−1)).

Since DUFh(λ, U(λ) is also an isomorphism of Xh
q it follows that in a neighborhood of the minimizer this

matrix is necessarily symmetric and positive definite. As a result, the attraction ball for the Newton’s
method is non-trivial, and the linear system (16) can be solved by robust and efficient iterative methods.

3. Least-squares methods for the Navier-Stokes equations. In this section we consider several
concrete examples of least-squares methods for (1)-(2). All these methods share a common trait: the first
stage of their development is based upon a least-squares principle for a norm-equivalent functional. Although
formally this would be sufficient to ensure that a conforming discretization yields an optimally accurate
method, the main question at the second stage becomes whether or not such method is also practical. To
deem a method as being practical several criteria must be met:

• the discrete system (13) should not be more difficult to obtain than, e.g., the system (7) in the mixed
method;

• discretization should be accomplished using standard, easy to use finite element spaces;
• the discrete problem should have reasonable condition number.

To satisfy the first condition all inner products appearing in Q(·; ·) must be computable. This is not the
case when Q(·; ·) involves, e.g., inner products in fractional or negative order Sobolev spaces. Similarly,
if Q(·; ·) involves second and/or higher order derivatives, then conforming discretization would require at
least C1 finite element spaces which violates the second condition., Methods considered in this section were
chosen primarily because they provide examples that illustrate how these problems arise and how they can
be resolved. All these methods use equivalent first-order formulations of the Navier-Stokes equations which
are derived by introducing new dependent variables in (1)-(2).

3.1. Velocity-vorticity-pressure formulation. Using the vorticity ω = curl u as new dependent
variable one obtains the first-order velocity-vorticity-pressure formulation of the Navier-Stokes equations

curlω + λω × u + grad p = f in Ω(17)
curl u− ω = 0 in Ω(18)

divu = 0 in Ω .(19)
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An admissible boundary operator for this system will be denoted by R(ω, p,u). Here we have that U =
(ω, p,u) and L corresponds to the velocity-vorticity-pressure Stokes operator. An interesting feature of this
first order system is that there are two different combinations of Hilbert scales in which the boundary value
problem for the Stokes operator is well-posed; see [4]. For some nonstandard boundary conditions, such as
pressure-normal velocity, or vorticity-tangential velocity, the relevant Hilbert scales are

Xq = Hq+1(Ω)×Hq+1(Ω) ∩ L2
0(Ω)×Hq+1(Ω)(20)

and

Yq = Hq(Ω)×Hq(Ω)×Hq(Ω)(21)

respectively, while for the velocity boundary condition (3) they are

Xq = Hq+1(Ω)×Hq+1(Ω) ∩ L2
0(Ω)×Hq+2(Ω) ∩H1

0(Ω)(22)

and

Yq = Hq(Ω)×Hq(Ω)×Hq+1(Ω) ,(23)

respectively. A specific choice of the scale parameter q now yields a particular form of the a priori estimate
(9). Setting, for example, q = 0 in (20)-(21) leads to the estimate

‖ω‖1 + ‖p‖1 + ‖u‖1 ≤ C (‖curlω + grad p‖0 + ‖curl u− ω‖0 + ‖divu‖0) ,(24)

which is valid for nonstandard boundary conditions. Operators which are well-posed in such spaces are
called H1-coercive since the right hand side in (24) defines an equivalent norm on a product of H1 spaces.
Similarly, setting q = 0 in (22)-(23) produces an a priori estimate for the velocity boundary condition:

‖ω‖1 + ‖p‖1 + ‖u‖2 ≤ C (‖curlω + grad p‖0 + ‖curl u− ω‖1 + ‖divu‖1) .(25)

Let us now consider possible ways to introduce a least-squares functional for the first-order system (17)-
(19). For simplicity, assume that the essential boundary conditions R(ω, p,u) are satisfied exactly by the
approximating spaces. (The case when finite element spaces are not constrained by the boundary conditions
will be considered later). Then a least-squares functional for (17)-(19) can be defined in a straightforward
manner by summing up L2-norms of the equation residuals

J(ω, p,u) =
1
2

(
‖curlω + λω × u + grad p− f‖20 + ‖curl u− ω‖20 + ‖divu‖20

)
.(26)

The nonlinear variational problem (11) associated with (26) involves only first-order terms and can be
discretized using standard C0 finite element spaces, i.e., a method based on (26) is practical. Such methods
were first considered in [12]-[13], where piecewise linear finite element spaces were used for all variables.
However, (24) implies that (26) is norm-equivalent only for nonstandard boundary conditions, i.e., the
framework of §2 is not applicable when (26) is considered with the velocity boundary condition (3). The lack
of norm-equivalence is not merely a technical inconvenience. There are computational examples which show
that (26) actually yields suboptimal convergence rates; see [8] and [11]. According to (25), a norm-equivalent
functional for the velocity boundary condition is given by

J(ω, p,u) =
1
2

(
‖curlω + λω × u + grad p− f‖20 + ‖curl u− ω‖21 + ‖divu‖21

)
.(27)

Because (27) uses H1-norms for the residuals of (18) and (19), the form Q(·; ·) in (11) now effectively
contains second order terms despite the fact that (17)-(19) is a first-order system. Consequently, conforming
discretization of (11) would require the use of C1 finite element spaces, i.e., the method would be impractical.

One possibility to circumvent this inconvenience is to replace the H1-norms in (27) by weighted L2

norms. This approach has been considered in [3] and [8]. The weighted counterpart of (27) is

J(ω, p,u) =
1
2

(
‖curlω + λω × u + grad p− f‖20 + h−2‖curl u− ω‖20 + h−2‖divu‖20

)
.(28)



6 P. BOCHEV

Now it is possible to use standard C0 finite element spaces since (28) and problem (13) contain at most
first-order terms. The use of this functional, however, introduces several complications into the abstract
framework of §2. Indeed, at the second, discretization, stage we arrive at a problem which is not a conforming
discretization of the Euler-Lagrange equation (11) for the original, norm-equivalent functional (27). As a
result, it is more difficult to show that (13) is well-posed and has a unique solution. Nevertheless, it is
possible to show that a method based on (28) is optimal provided u is approximated by finite element spaces
of one order higher than the spaces used for ω and p; see [3] and [8].

Let us now consider another possibility to avoid the second order terms in (27). The idea is to choose
a weaker combination of spaces Xq and Yq for the first-order boundary value problem. If we set q = −1 in
(22)-(23) then the relevant a priori estimate becomes

‖ω‖0 + ‖p‖0 + ‖u‖0 ≤ C (‖νcurlω + grad p‖−1 + ‖curl u− ω‖0 + ‖divu‖0) .(29)

As a result,

J(ω, p,u) =
1
2

(
‖curlω + λω × u + grad p− f‖2−1 + ‖curl u− ω‖20 + ‖divu‖20

)
.(30)

is another norm-equivalent functional for (17)-(19) with the boundary condition (3). Like in (25) we see that
velocity and vorticity cannot have the same differentiability, i.e., these variables remain coupled. However,
the form Q(·; ·) will not contain any second order terms, i.e., a conforming discretization of (11) is formally
possible by means of standard C0 finite element spaces. Still, functional (30) is not any more practical than
(27) because now Q(·; ·) involves H−1 inner products which are not computable. The key to a practical
method, suggested in [9], is to observe that

‖f‖2−1 = ((−4)−1f, f)0.

As a result, if Bh is a computable approximation of (−4)−1, then

‖f‖2−h = ((h2I + Bh)f, f)0

defines a computable discrete equivalent of ‖f‖−1. Using this norm we can replace (30) by the discrete
negative norm functional

J(ω, p,u) =
1
2

(
‖curlω + λω × u + grad p− f‖2−h + ‖curl u− ω‖20 + ‖divu‖20

)
.(31)

When (31) is restricted to finite element spaces it exhibits norm-equivalence properties similar to those of the
primary functional (30). The Euler-Lagrange equation for (31) now furnishes the desired discrete problem.

As in the case with (27) and (28) this gives rise to a discrete problem which is not a conforming discretiza-
tion of the Euler-Lagrange equation (11) associated with the original functional (30). The corresponding
method has been studied in [5]. One of the major complications in the analysis now stems from the fact
that, unlike the conforming case, the use of (31) also introduces an approximation in the nonlinear term.
More precisely, a conforming discretization of the Euler-Lagrange equation of the primary functional (30)
has the canonical form (12), while the abstract form of the Euler-Lagrange equation for (31) is

F−h(λ, Uh) ≡ Uh + T−h ·G−h(λ, Uh) = 0 .(32)

This makes it more difficult to show that DUF−h is an isomorphism in a neighborhood of the solution.
Although both analysis and implementation of the negative norm method are more complicated than that
of (28), this method offers some very significant advantages. First, conditioning of the discrete system is
better than in the weighted method. Second, efficient preconditioners for the discrete system can be defined
in a natural way; see [9] and [5]. Third, error estimates for the negative norm method can be established
under more relaxed regularity assumptions than for the weighted method; see [5].

One of the important advantages of least-squares principles is that they allow one to consider finite
element spaces that are not constrained by the essential boundary conditions. There are examples of similar
Galerkin methods where boundary conditions are enforced in a weak, variational sense using Lagrange
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multipliers. In the context of least-squares methods this can be easily accomplished by including boundary
residuals in the least-squares functional. For example,

J(ω, p,u) =
1
2

(
‖curlω + λω × u + grad p− f‖2−1 + ‖curl u− ω‖20 + ‖divu‖20 + ‖u‖21/2,Γ

)
.(33)

is a norm-equivalent functional which includes a residual of a homogeneous velocity boundary condition.
Consequently, it is not necessary to constrain the approximation space by this condition since it is enforced
weakly in the minimization process. Boundary residuals usually require the use of norms and inner products
in fractional order Sobolev spaces. These are not easily computable and before a practical method can be
defined one must choose a way to replace such norms and inner products by computable discrete equivalents.
One standard choice is to use weighted L2 norms.

3.2. Velocity-flux formulations. In this section we consider least-squares methods based upon a
different first-order form of the Navier-Stokes equations. The objective is to derive a system which is H1-
coercive with the velocity boundary condition (3). Then it is possible to define least-squares methods that do
not require weights or negative norms in the functional. The system in question was first introduced in [10]
for the Stokes equations and then extended to the Navier-Stokes equations in [6]. To derive this first-order
system we choose as a new dependent variable the velocity gradient tensor (called velocity flux in [10])

U = (gradu)t.

In terms of U, the Navier-Stokes problem (1)-(3) is given by (see [6])

−divU + λUtu + grad p = f in Ω(34)
divu = 0 in Ω(35)

U− (gradu)t = 0 in Ω(36)

and (3). The velocity flux system (34)-(36) is well-posed in Hilbert scales very similar to (22)-(23), i.e., it is
not yet H1-coercive and the relevant a priori estimate is

‖U‖0 + ‖u‖1 + ‖p‖0 ≤ C
(
‖ − divU + grad p‖0 + ‖U−∇ut‖0 + ‖divu‖0

)
.(37)

The main idea of [10] is that H1-coercive system can be obtained by augmenting (34)-(36) by additional
constraints. In particular, in view of the definition of the new variable U and the incompressibility constraint
(35) we have that

grad(trU) = 0 in Ω(38)
curlU = 0 in Ω ,(39)

and

U× n = 0 on Γ .(40)

Although the resulting system (34)-(36), (38), (39), (3) and (40) is overdetermined, it is consistent and
H1-coercive. The relevant a priori estimate for the augmented velocity flux Stokes operator is

‖U‖1 + ‖u‖1 + ‖p‖1 ≤ C
(
‖ − divU + grad p‖0 + ‖divu‖0(41)

+ ‖U− (gradu)t‖0 + ‖ grad(trU)‖0 + ‖curlU‖0
)

.

As a result,

J(U,u, p) =
1
2

(
‖ − divU + λUtu + grad p− f‖20(42)

+ ‖divu‖20 + ‖U− (gradu)t‖20 + ‖ grad(trU)‖20 + ‖curlU‖20
)
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is a norm-equivalent functional. The variational problem (11) for (42) involves at most first-order terms and
can be discretized using standard finite element spaces. Because (13) is defined by conforming discretization,
analysis of the resulting method follows the framework outlined in §2; see [6].

We note that instead of using the augmented system one could also define a least-squares method using
the system (34)-(36). Of course, since the former system is not H1-coercive it is necessary to use either a
weighted functional similar to (28), or a negative norm functional similar to (31). A discrete negative norm
method for the velocity flux system has been considered in [7]. Such method is of interest primarily because
it allows to establish optimal discretization error estimates assuming less regularity of the exact solutions
than that required for the H1-coercive formulation.
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